Ripik.ai has been associated with IMFA since Jan 2023 towards implementation of Industry 4.0 in our Choudwar plant located in Odisha. They are working on two machine learning / data science use related to power and metallurgical coke consumption optimization through real-time alerts. The team has good knowledge in the areas of data science & machine learning, and their problem solving skill set is high
I have known Pinak, Arunabh and Navneet since 2017. They were part of Advanced analytics program in TSK between 2017 and 2020 and placed a crucial role in its delivery. The team worked end to end in conceptualization and delivery of the use cases across Blast Furnace, Sinter Plant and Steel Melt Shop.
Ripik.ai has been the analytics partner of Godrej & Boyce since March 2022. They have been doing projects with the Interio and Aerospace businesses already and we are exploring use cases for other businesses as well. Pinak and his team have worked with us closely on these manufacturing use cases. They have an unparalleled understanding of the process and can bring impact very quickly
I am delighted to write this testimonial about Ripik.ai, one of ESL’s analytics partner since January 2023. The Ripik.ai team is working on three use cases in our Upstream section at the Bokaro plant – Digital Twin of Blast Furnace, Burden Mix optimization in Blast Furnace and Green Mix optimization in Sinter Plant Burden Mix optimization in Blast Furnace and Green Mix …
Meet our elite squad - some of the brightest minds from Google, MIT, and IITs, pioneering the future at Ripik.AI.
Choose Ripik.AI for innovative Computer Vision AI Solution that drive operational excellence in manufacturing industries.
Join Ripik.AI where learning is more impactful, diversity inspires, and work-life harmony thrives.
Explore the latest breakthroughs, partnerships, and global recognitions shaping Ripik.AI's impact on industrial AI
Discover Ripik AI's latest event appearances showcasing cutting-edge AI solutions for manufacturing.
Tackle raw material variability and environmental challenges with accurate, real-time visibility.
Transforming Cement Manufacturing Operations with Our Patented Vision AI SaaS Platform for Process Optimization
Empower operators to precisely control bath temperature and significantly reduce power usage and AIF3 consumption.
Solve high impact use cases and maximize quality by identifying important parameters and sweet spot of operations.
Revolutionizing boiler operations with patented Computer Vision for higher productivity and lower energy costs.
Unlock efficiency and optimize processes across industries with our advanced, and intelligent AI technologies.
Ripik’s Vision AI Agents are your automated pair of eyes — developing intelligent monitoring agents for engineered industrial performance.
Move beyond number crunching and reduce process variability with an automated pair of eyes—our Vision AI platform
Let us walk you through a tailored demo experience.
Tackle raw material variability and environmental challenges with accurate, real-time visibility.
Transforming Cement Manufacturing Operations with Our Patented Vision AI SaaS Platform for Process Optimization
Empower operators to precisely control bath temperature and significantly reduce power usage and AIF3 consumption.
Solve high impact use cases and maximize quality by identifying important parameters and sweet spot of operations.
Revolutionizing boiler operations with patented Computer Vision for higher productivity and lower energy costs.
Unlock efficiency and optimize processes across industries with our advanced, and intelligent AI technologies.
Ripik.ai has been associated with IMFA since Jan 2023 towards implementation of Industry 4.0 in our Choudwar plant located in Odisha. They are working on two machine learning / data science use related to power and metallurgical coke consumption optimization through real-time alerts. The team has good knowledge in the areas of data science & machine learning, and their problem solving skill set is high
I have known Pinak, Arunabh and Navneet since 2017. They were part of Advanced analytics program in TSK between 2017 and 2020 and placed a crucial role in its delivery. The team worked end to end in conceptualization and delivery of the use cases across Blast Furnace, Sinter Plant and Steel Melt Shop.
Ripik.ai has been the analytics partner of Godrej & Boyce since March 2022. They have been doing projects with the Interio and Aerospace businesses already and we are exploring use cases for other businesses as well. Pinak and his team have worked with us closely on these manufacturing use cases. They have an unparalleled understanding of the process and can bring impact very quickly
I am delighted to write this testimonial about Ripik.ai, one of ESL’s analytics partner since January 2023. The Ripik.ai team is working on three use cases in our Upstream section at the Bokaro plant – Digital Twin of Blast Furnace, Burden Mix optimization in Blast Furnace and Green Mix optimization in Sinter Plant Burden Mix optimization in Blast Furnace and Green Mix …
Meet our elite squad - some of the brightest minds from Google, MIT, and IITs, pioneering the future at Ripik.AI.
Choose Ripik.AI for innovative Computer Vision AI Solution that drive operational excellence in manufacturing industries.
Join Ripik.AI where learning is more impactful, diversity inspires, and work-life harmony thrives.
Explore the latest breakthroughs, partnerships, and global recognitions shaping Ripik.AI's impact on industrial AI
Discover Ripik AI's latest event appearances showcasing cutting-edge AI solutions for manufacturing.
Ripik’s Vision AI Agents are your automated pair of eyes — developing intelligent monitoring agents for engineered industrial performance.
Move beyond number crunching and reduce process variability with an automated pair of eyes—our Vision AI platform
Let us walk you through a tailored demo experience.
The cement industry is one of the largest sectors and serves as the backbone of construction and infrastructure development. It is constantly seeking ways to reduce operational costs and minimize its environmental footprint. Traditionally, the cement industry has relied on fossil fuels, coal, and coke as primary fuels for kilns, which are associated with high carbon emissions. In line with government policies across the globe aimed at reducing emissions, the adoption of alternative fuels has become a critical solution.
Alternative fuels, such as Refuse-Derived Fuel (RDF), a type of solid waste, are increasingly being considered a viable solution. They serve as an alternative fuel option and an efficient method for disposing of municipal solid waste. The unique properties of cement sintering in rotary kilns allow for the use of various fuels, including some that are prohibited in other processes. However, despite the environmental and economic benefits, there are key challenges associated with burning RDF in cement kilns. To tackle these challenges, advanced technological solutions, notably AI vision systems and analytical tools are required. Let’s explore the impact of adopting such fuels.
Alternative fuels like RDF or municipal solid waste are environmentally friendly unlike traditional fossil fuels. However, their inherent complexity poses challenges in using them as fuels. Here are some of them:
RDF is a mixture of various waste materials, which may include PVC and materials with higher chloride and sulfur content—resulting in a low melting point.
This unrefined mixture creates more complex chemical and physical properties compared to traditional fuels, making it difficult to determine the exact calorific value.
The complex mixture of different materials with varying calorific values in the kiln can result in incomplete combustion, uneven heat distribution, and unstable clinker formation. If not addressed, these issues can cause severe blockages and ring formations within the cement kiln, leading to operational inefficiencies, reduced clinker quality, and negative environmental impacts.
For RDF to be a suitable alternative to fossil fuels, it must meet certain high-quality standards to be used in cement kilns. Otherwise, it may have adverse effects on the environment and combustion efficiency. The primary goal is to refine RDF to achieve uniform particle size and limit chlorine content. Meeting these criteria ensures smooth kiln operation and reduces maintenance needs. However, producing high-standard refined RDF requires a sophisticated process. The three most important parameters to achieve fuel quality are calorific value, low moisture content, and consistent particle size.
Good quality RDF should have a high calorific value (15-25 MJ/kg) and low concentrations of toxic components like metals, with moisture content below 20% to ensure sufficient energy is generated for clinker production. Chemically, the chlorine content in the waste should be below 1% and sulfur below 2% to prevent damage to kiln components and excessive emissions. Additionally, non-combustible substances like metals, glass, and stone, which can cause blockages, must be removed during segregation.
Vision AI is emerging as a key solution for numerous industrial challenges, moving beyond being just a buzzword, particularly in automation and analysis. In the cement industry, Vision AI can be utilized to oversee and evaluate kiln operations, enhancing sustainability efforts. By integrating AI with a plant’s advanced process control (APC), teams gain valuable data-driven insights that help boost their thermal substitution rate and make informed operational and procurement decisions in the dynamic alternative fuel markets. The vision system provides more flexibility and a contactless approach to analysis without disturbing the process flow. Let’s see how the AI vision system aids fuel analysis in each section.
Powered by AI vision technology, advanced process control can achieve automation by detecting critical parameters and adjusting processes to mitigate potential risks. The AI vision system enables users to store, analyze, and detect anomalies in real-time visual data acquired from the plant. This significantly increases the efficiency of using alternative fuels by identifying possible blockages or risks early on.
Data engineering and visual data lake creation: This is the first step in achieving advanced process control using visual AI. Real-time monitored data from the plant or cement kiln is stored and analyzed for immediate control or later evaluation to identify potential deviations. A data lake enables the integration, processing, and analysis of video data from multiple sources. It also supports data visualization and creates automated workflows for operational efficiency.
Self-cleaning mechanism: Cement manufacturing operates in a dusty environment where camera lenses can quickly become dirty, obscuring visuals. The self-cleaning mechanism uses sensor detection to identify contaminants on the lens and clean it automatically, ensuring uninterrupted monitoring.
Application-based and WhatsApp alert system: Alerting users to detected anomalies is as important as the detection itself. Modern AI vision systems connected through mobile and desktop applications can send alert notifications instantly. Additionally, WhatsApp notifications allow supervisors to receive alerts even when they are away from the plant.
As discussed earlier, RDF is a complex mixture of waste, making it challenging to accurately analyze its calorific value. AI vision systems, equipped with advanced image recognition and machine learning capabilities, can detect the proportions of various components in RDF. Unlike traditional techniques, vision systems analyze these proportions in real time without disturbing the fuel flow. Once the vision analysis system calculates the proportion of material, the AI system can estimate the calorific value accurately.
CONTREC Messtechnik - Positive Material Identification (PMI) with EDXRF
AI-powered real-time data analysis provides valuable insights into process control parameters such as temperature and gas analyzer data, which can help identify potential blockages or ring formation. Thermal analysis, assisted by AI, detects unusual thermal patterns in the kiln that may indicate ring formation. Additionally, visual data offers insights into combustion efficiency, enabling the system to predict the fuel required for optimal burning and maintain stable kiln operation.
Excess moisture in RDF leads to inefficient combustion and compromises clinker quality. High moisture content can also cause material agglomeration, resulting in uneven material flow, ring formation, or buildup on kiln walls.
AI vision systems use infrared imaging and color analysis to detect moisture levels. Infrared imaging identifies temperature variations in RDF, which correlate with moisture content, while color analysis detects darker color structures that often indicate higher moisture levels.
Ensuring consistent fuel particle size is crucial to avoiding blockages and ensuring complete combustion. AI vision systems use object detection to identify large particles, metals, and PVC materials that could disrupt kiln operations. These systems continuously monitor the particle size on the conveyor belt before the fuel reaches the kiln, allowing for corrective actions to be taken promptly.
By integrating with advanced process control (APC) systems, Vision AI can optimize kiln operations by leveraging real-time data to make immediate adjustments to the fuel feed rate. By improving combustion efficiency and reducing emissions, Vision AI contributes to a more sustainable and environmentally friendly cement production process.
Vision AI can also be used to perform volumetric analysis of materials, providing accurate measurements of volumes of different components in the fuel mix. This information can be used to optimize the fuel blend.
The adoption of RDF as a fuel for cement kilns offers significant cost savings and environmental benefits. However, the complex nature of RDF necessitates high-quality standards and advanced processes to ensure efficient combustion and minimize operational challenges. Integrating AI vision systems into cement and steel plants enhances the ability to monitor and analyze fuel quality, detect anomalies, and optimize combustion processes. This technology ultimately supports more sustainable, cost-effective, and efficient production.
Insights and perspectives from Ripik.ai's thought leaders
AI-Driven Productivity Tracking involves real-time monitoring of workflows, resources, machine performance,...
IR monitoring combined with vision systems are trained to identify complex patterns and subtle thermal...
Effective manufacturing process monitoring ensures operational excellence, product consistency, and proactive...
Machine health monitoring empowers maintenance teams to transition from reactive maintenance to condition-based...
As businesses scale and diversify, the demand for greater efficiency, minimal downtime, and enhanced...
AI in the mining industry is not merely a trend; it’s a necessity. With vast operations often spread...
Discover how AI is transforming plant uptime in manufacturing by enabling predictive maintenance, real-time...
Agentic AI in manufacturing operations are designed, executed, and optimized. These systems act autonomously,...
Root Mean Square Error (RMSE) is a widely used metric that measures the average magnitude of prediction...
The blast furnaces steelmaking process is a complex and requires precise control over various parameters....
AI platforms for anomaly detection are transforming a wide range of industries by leveraging advanced...
The role of AI in enhancing energy efficiency in cement plants particularly in fuel Consumption is significant...
Vision AI agent operate through a structured pipeline involving perception, analysis, decision-making,...
Particle size analysis plays a critical role in heavy industries such as cement, mining, steel, and power...
Conveyor volume scanners are revolutionizing stockpile management by providing precise, real-time data...
AI agents are revolutionizing businesses by automating processes, improving decision-making, and optimizing...
Vision AI is an advanced artificial intelligence-powered system that uses computer vision to interpret...
Automating stockpile volume measurement with Vision AI and LiDAR for industries such as mining, cement,...
Agentic AI applications in manufacturing can optimize production lines, predict equipment failures, and...
As industries continue to evolve and demand higher levels of productivity, the adoption of computer vision...
Accurate raw material moisture analysis plays a pivotal role in industrial operations, directly influencing...
Eliminating downtime in cement plants is no longer a distant goal but a tangible reality with the adoption...
Optimizing cloud architectures for cost-effectiveness is the major goal of such an architecture. The...
Computer vision technology is a replica of human vision by enabling machines to "see" and analyze images...
AI is nowadays playing a pivotal role in contributing towards the reduction of the carbon footprint in...
Incorporating computer vision into factory operations will unlock several new opportunities for efficiency,...
Alternative fuels, such as Refuse-Derived Fuel (RDF), a type of solid waste, are increasingly being considered...
Discover how Vision AI, a cutting-edge technology, surpasses traditional ML models to optimize manufacturing...
Integrating AI in the cement industry is a much-needed breath of fresh air. We’re on the brink of a new...
Research by Nature claims that artificial intelligence can contribute to fulfilling 79% of the target...
The powerful combination of artificial intelligence and cutting-edge vision AI systems presents a breakthrough...
Learn how AI-driven preventive maintenance minimizes equipment downtime in heavy manufacturing. Boost...
Computer Vision AI is changing Asset Performance Management (APM) by enabling real-time monitoring and...
Coal moisture detection ensures that coal is at the right moisture level for optimal burning to enable...
Enhance Electric Arc Furnace efficiency with real-time monitoring and advanced visual analytics. Track...
The integration of Vision AI into cement kiln operations presents a transformative opportunity for manufacturers...
Real-time, automated refractory monitoring is a game-changer for high-temperature industries, providing...
Computer vision is revolutionizing machine monitoring system as it is crucial for optimal performance...
With the boom of AI in the manufacturing sectors, predictive maintenance with AI has arrived as a game-changing...
Computer vision AI platforms are instrumental in these advancements, offering precise 24/7 monitoring,...
For more information on how Ripik.ai can help your organization reduce cloud compute costs and optimize...
Computer Vision AI is a transformative technology poised to redefine production monitoring systems, contributing...
Anomaly detection in manufacturing is a critical component of maintaining product quality, ensuring operational...
Computer Vision AI Platforms have emerged as a game-changer in the manufacturing sector, revolutionizing...
AI-Driven Productivity Tracking involves real-time monitoring of workflows, resources, machine performance,...
IR monitoring combined with vision systems are trained to identify complex patterns and subtle thermal...
Effective manufacturing process monitoring ensures operational excellence, product consistency, and proactive...
Machine health monitoring empowers maintenance teams to transition from reactive maintenance to condition-based...
As businesses scale and diversify, the demand for greater efficiency, minimal downtime, and enhanced...
AI in the mining industry is not merely a trend; it’s a necessity. With vast operations often spread...
Discover how AI is transforming plant uptime in manufacturing by enabling predictive maintenance, real-time...
Agentic AI in manufacturing operations are designed, executed, and optimized. These systems act autonomously,...
Root Mean Square Error (RMSE) is a widely used metric that measures the average magnitude of prediction...
The blast furnaces steelmaking process is a complex and requires precise control over various parameters....
AI platforms for anomaly detection are transforming a wide range of industries by leveraging advanced...
The role of AI in enhancing energy efficiency in cement plants particularly in fuel Consumption is significant...
Vision AI agent operate through a structured pipeline involving perception, analysis, decision-making,...
Particle size analysis plays a critical role in heavy industries such as cement, mining, steel, and power...
Conveyor volume scanners are revolutionizing stockpile management by providing precise, real-time data...
AI agents are revolutionizing businesses by automating processes, improving decision-making, and optimizing...
Vision AI is an advanced artificial intelligence-powered system that uses computer vision to interpret...
Automating stockpile volume measurement with Vision AI and LiDAR for industries such as mining, cement,...
Agentic AI applications in manufacturing can optimize production lines, predict equipment failures, and...
As industries continue to evolve and demand higher levels of productivity, the adoption of computer vision...
Accurate raw material moisture analysis plays a pivotal role in industrial operations, directly influencing...
Eliminating downtime in cement plants is no longer a distant goal but a tangible reality with the adoption...
Optimizing cloud architectures for cost-effectiveness is the major goal of such an architecture. The...
Computer vision technology is a replica of human vision by enabling machines to "see" and analyze images...
AI is nowadays playing a pivotal role in contributing towards the reduction of the carbon footprint in...
Incorporating computer vision into factory operations will unlock several new opportunities for efficiency,...
Alternative fuels, such as Refuse-Derived Fuel (RDF), a type of solid waste, are increasingly being considered...
Discover how Vision AI, a cutting-edge technology, surpasses traditional ML models to optimize manufacturing...
Integrating AI in the cement industry is a much-needed breath of fresh air. We’re on the brink of a new...
Research by Nature claims that artificial intelligence can contribute to fulfilling 79% of the target...
The powerful combination of artificial intelligence and cutting-edge vision AI systems presents a breakthrough...
Learn how AI-driven preventive maintenance minimizes equipment downtime in heavy manufacturing. Boost...
Computer Vision AI is changing Asset Performance Management (APM) by enabling real-time monitoring and...
Coal moisture detection ensures that coal is at the right moisture level for optimal burning to enable...
Enhance Electric Arc Furnace efficiency with real-time monitoring and advanced visual analytics. Track...
The integration of Vision AI into cement kiln operations presents a transformative opportunity for manufacturers...
Real-time, automated refractory monitoring is a game-changer for high-temperature industries, providing...
Computer vision is revolutionizing machine monitoring system as it is crucial for optimal performance...
With the boom of AI in the manufacturing sectors, predictive maintenance with AI has arrived as a game-changing...
Computer vision AI platforms are instrumental in these advancements, offering precise 24/7 monitoring,...
For more information on how Ripik.ai can help your organization reduce cloud compute costs and optimize...
Computer Vision AI is a transformative technology poised to redefine production monitoring systems, contributing...
Anomaly detection in manufacturing is a critical component of maintaining product quality, ensuring operational...
Computer Vision AI Platforms have emerged as a game-changer in the manufacturing sector, revolutionizing...
A powerful suite of intelligent agents working in sync to transform manufacturing with speed, precision, and autonomy.
Industries
Products
Support
Client Stories
Resources